

water & sanitation

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

DETERMINATION OF WATER RESOURCE CLASSES AND ASSOCIATED RESOURCE QUALITY OBJECTIVES IN THE THUKELA CATCHMENT

PROJECT STEERING COMMITTEE MEETING 5

Presented by: Golder Associates

Date: 28 April 2021

Purpose of the meeting

To present progress related to:

- Draft Resource Quality Objectives and Numerical Limits
 - Rivers and Dams
 - Wetlands
 - Groundwater
 - Estuary

Study Progress

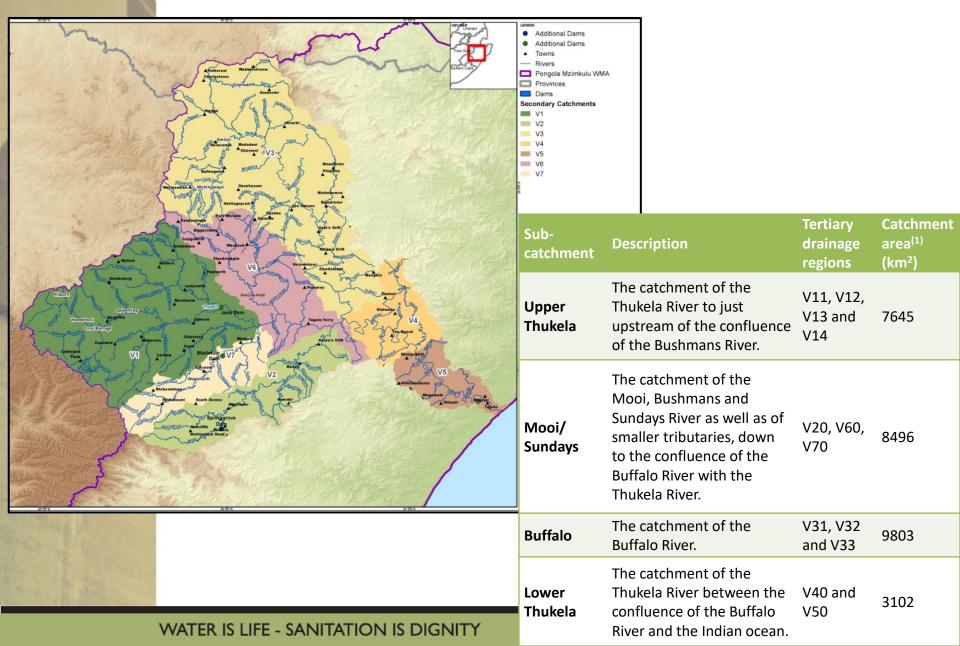
REPORT INDEX	REPORT NUMBER	REPORT TITLE
1.0	RDM/WMA04/00/CON/ CLA/0119	Inception Report
2.0	RDM/WMA04/00/CON/ CLA/0120	Water Resources Information and Gap Analysis Report
3.0	RDM/WMA04/00/CON/ CLA/0220	Specialist Workshops Report
4.0	RDM/WMA04/00/CON/ CLA/0320	Status Quo and Integrated Unit of Analysis and Resource Units Report
5.0	RDM/WMA04/00/CON/ CLA/0420	Report on Linking the Socio-Economic and Ecological Value and Condition of the Water Resources
6.0	RDM/WMA04/00/CON/ CLA/0520	Preliminary Resource Units Selection and Prioritisation Report
7.0	RDM/WMA04/00/CON/ CLA/0720	Quantification of Ecological Water Requirements Report
8.0	RDM/WMA04/00/CON/ CLA/0620	Sub-components prioritization and indicators selection Report
9.0	RDM/WMA04/00/CON/ CLA/0121	Scenarios Evaluation and Proposed Water Resource Classes Report
10.0	RDM/WMA04/00/CON /CLA/0221	Draft RQOs and Numerical Limits Report

Step 1: Delineate and prioritise RUs and select study sites

Step 2: Describe status quo and delineate the study area into Integrated Units of Analysis (IUAs)

Step 3: Quantify EWR

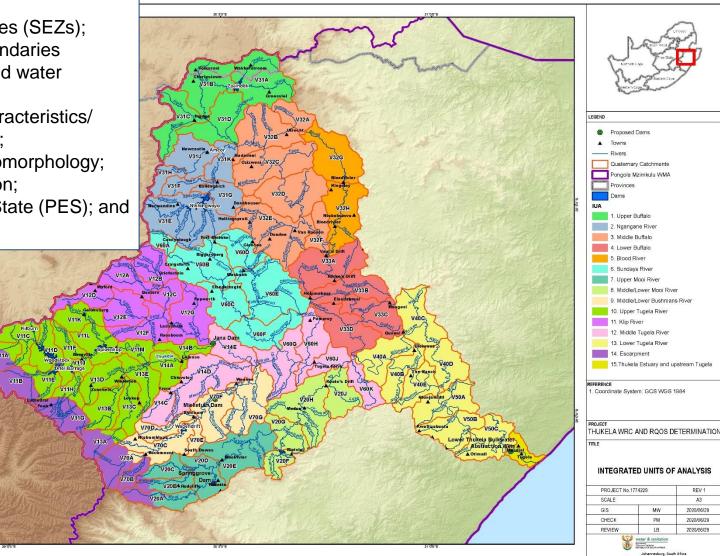
Step 4: Identify and model scenarios within IWRM


Step 5: Determine water resource class based on catchment configurations for identified scenarios

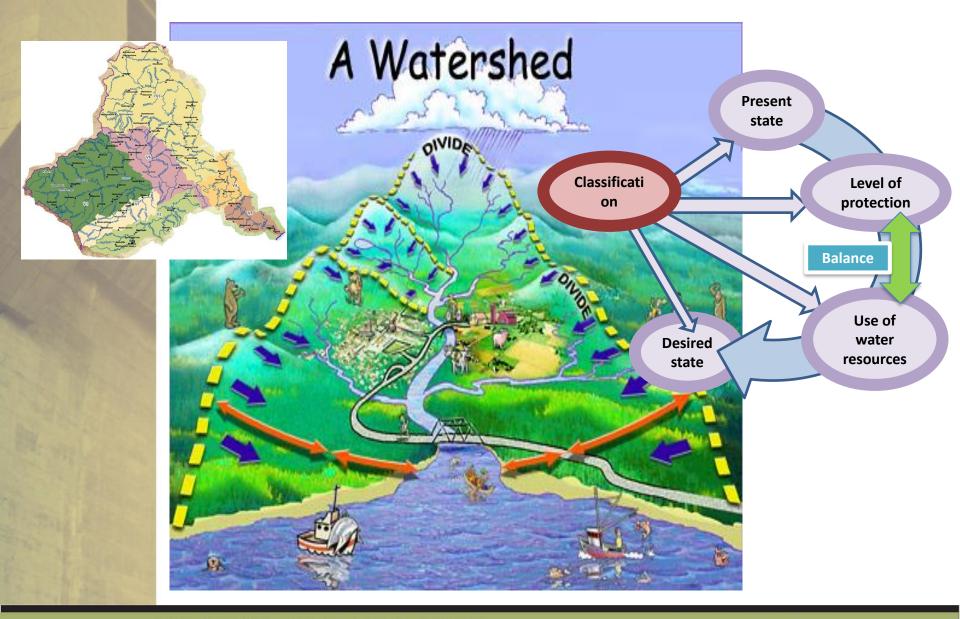
Step 6: Determine RQOs (narrative and numerical limits) and provide implementation information

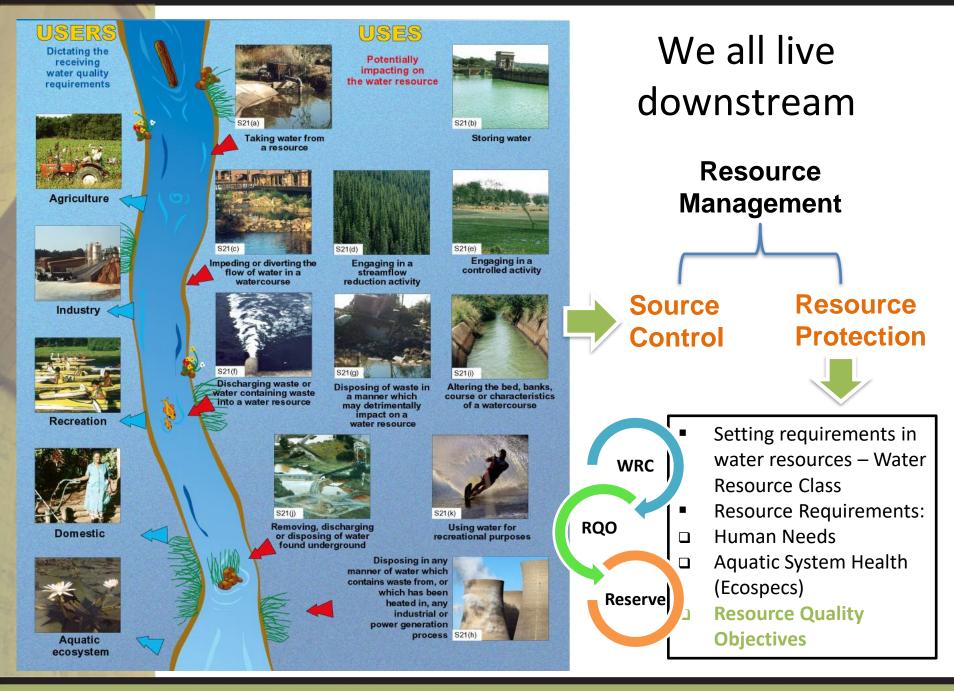
Step 7: Finalise and prepare integrated gazette template

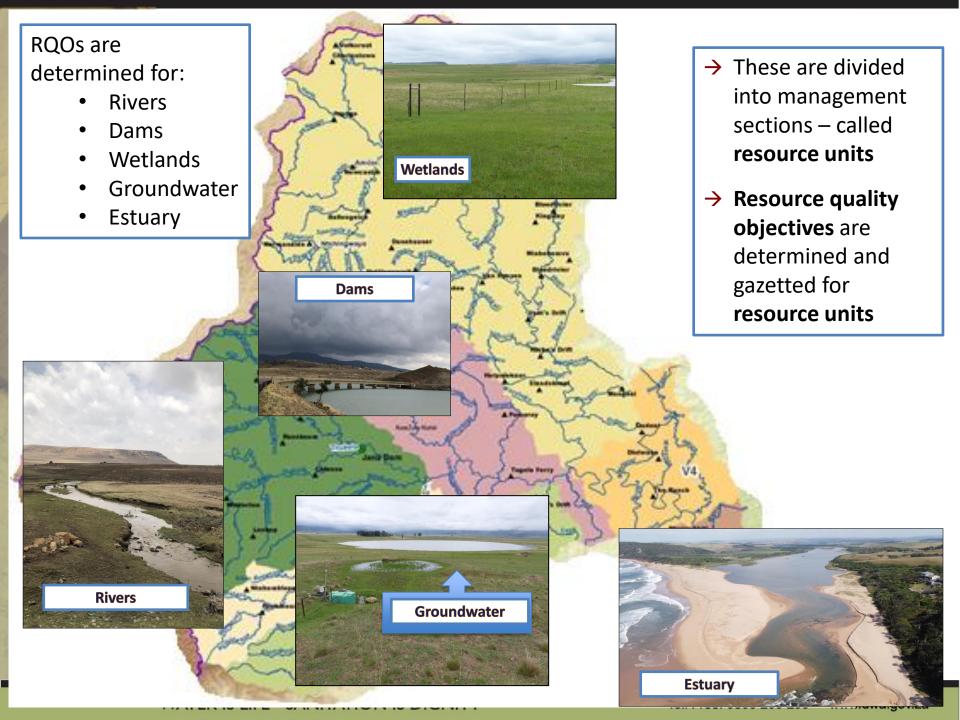
Step 8: Gazette the Reserve (not part of the project)


Study Overview: Thukela catchments

Study Overview: Integrated Units of Analysis (IUA)

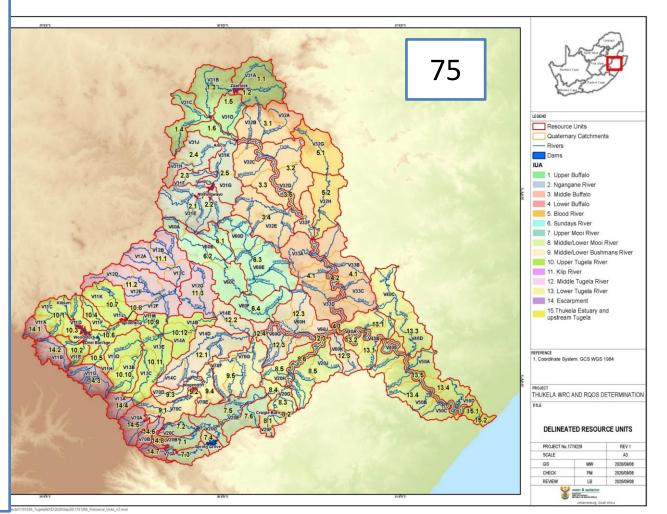

Divided the area into **15** Integrated Units of Analysis (IUA) based on:


- Socio-economic zones (SEZs);
- Catchment area boundaries (drainage regions and water resource systems);
- Similar land use characteristics/ land-based activities;
- Eco-regions and geomorphology;
- Ecological information;
- Present Ecological State (PES); and
- Stakeholder input



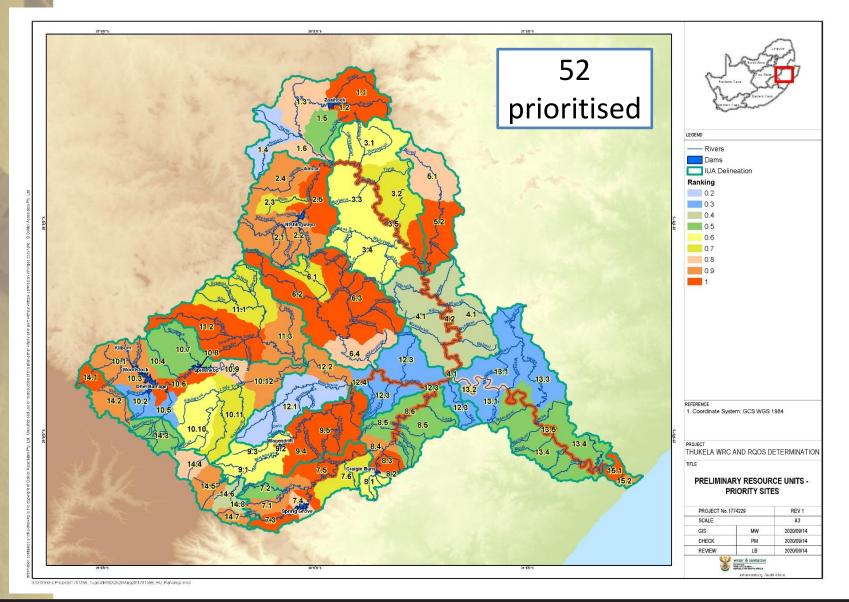
S1GISSVGis Projects\1791356_Tugela\MXD\2020\Jun20\1791356_IUA_v5_DWS.mx

Classification of Water Resources



Resource Units

The Resource Unit Prioritisation Tool used for prioritisation, incorporates a multi criteria decision analyses approach included:

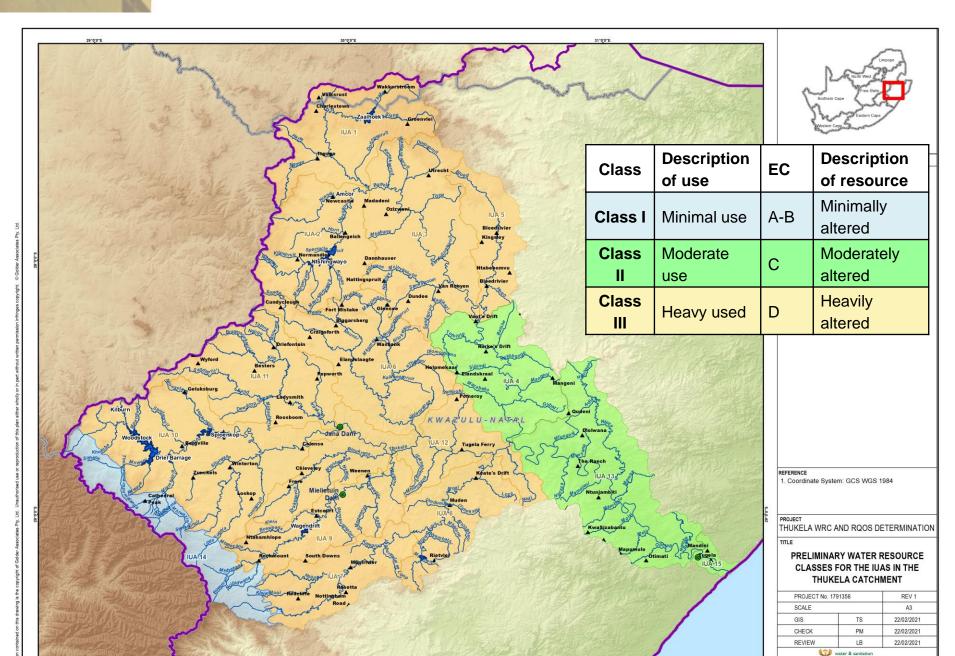

- Position of RUs within an IUA,
- Importance of the RU to users,
- Threat posed to water resource quality for users,
- Threat posed to water resource quality for the environment,
- Ecological considerations,
- Practical constraints, and
- Management considerations.

Determination of Resource Quality Objectives

- Resource Quality Objectives have to be determined for a significant water resource as the means to ensure a desired level of protection.
- The purpose of RQOs is to provide limits or boundaries for biological, physical, and chemical attributes which should be met in the receiving water resource in order to ensure protection.
- In determining RQOs it is important to recognise that different water resources will require different levels of protection. In addition to achieving the Water Resource Class, the RQOs determined will ensure that the needs of all users and competing interests who rely on the water resources are considered.

Resource Unit Prioritisation

Determination of Resource Quality Objectives


RQOs encompass the following four components of the resource:

- Water quantity,
- Water quality,
- Habitat integrity, and
- Biotic
 characteristics.

In terms of the National Water Act, RQOs are based on the Water Resource Class and may relate to the following

- the Reserve,
- In-stream flow,
- Water level,
- Presence and concentration of particular substances in the water,
- Characteristics and quality of the water resource,
- In-stream and riparian habitat quality,
- Characteristics and distribution of aquatic biota, and
- Regulation or prohibition of in-stream or land-based activities which may affect the quantity of water in or quality of the water resource, and
- Any other characteristic of the water resource in question.

Study Overview: Proposed Water Resource Classes

Sub-components considered

Rivers and dams:

Wetlands:

Estuary:

- Quality Ο
- Quantity 0
- Ο
- Ο

- - **Dissolved** inorganic 0 phosphate
 - Water clarity Ο
 - **Dissolved** oxygen 0
 - **Toxic substances** \cap
 - Pathogens Ο
- **Physical Habitat**
 - Intertidal 0
 - Subtidal Ο
 - Substrate type Ο
- Biota
 - Microalgae Ο
 - Macrophytes Ο
 - Invertebrates Ο
 - Fish Ο
 - Birds 0

Groundwater:

- Quantity (abstraction), Ο
- Aquifer water level, Ο
- Water quality, and Ο
- Protection zones 0

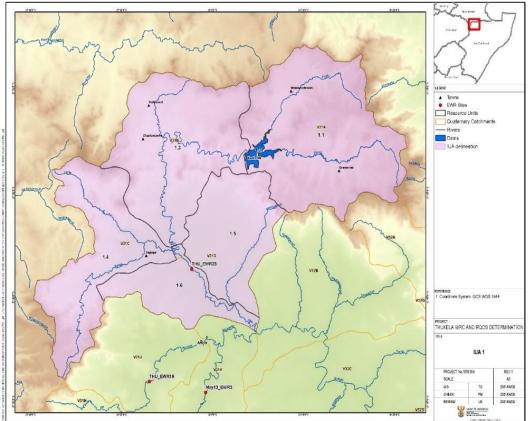
- Quantity
 - Low Flows \cap
 - **High Flows** 0
- Quality
 - Nutrients \cap
 - Salts \bigcirc
 - Systems variables Ο
 - Toxics Ο
 - Pathogens Ο
- Habitat
 - Instream habitat 0
 - **Riparian habitat** Ο

Biota

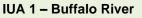
- Fish 0
- Aquatic and riparian plant Ο species
- Mammals Ο
- Birds \cap
- Amphibians and reptiles Ο
- Periphyton Ο
- Aquatic invertebrates Ο
- Diatoms Ο

Toll Free: 0800 200 200 www.dwa.gov.za

- and Habitat
- Biota


RESOURCE QUALITY OBJECTIVES

Rivers and Dams (Example)


WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

IUA 1 Buffalo River RUs description

CLO PLACE THE LABOR DURING THE REAL REAL

Resource Unit 1.1: Wetland resource unit: Wakkerstroom - Quaternary catchment V31A

Main stem river. Falls within areas defined as SWSA. Important ecosystem services, two priority wetlands being significant to rural communities, Wakkerstroom and Groenvlei FEPA wetlands (prioritized) - important for flood attenuation and sediment trapping, important for water purification; Peatlands; Rivers are in a B ecological category. High household, tourism, and society value. Proposed Groenvlei Agri village. Sampling points on WMS.

Note: this RU has both river and wetland related RQOs

Resource Unit 1.2: Zaaihoek Dam - Quaternary catchment V31A

Main stem. Rivers are in a PES: C category. Some FEPA wetlands, irrigated areas. Domestic WWTW discharge in Volksrust (poor quality effluent) and Charlestown WWTW (ponds). Absence of formalised sanitation impacts to groundwater. Sampling points on WMS, however difficult to access.

Resource Unit 1.3: Buffalo and Slang - Quaternary catchment V31B

Main stem. Rivers are in a PES: C category. Some FEPA wetlands, irrigated areas. Domestic WWTW discharge in Volksrust (poor quality effluent) and Charlestown WWTW (ponds). Absence of formalised sanitation impacts to groundwater. Sampling points on WMS, however difficult to access.

Resource Unit 1.6: Buffalo to confluence with Ngagane – Quaternary catchment V31C, D

Rivers in a category C; extensive irrigation; FEPA wetlands; AMCOR industrial area downstream in the RU, just upstream of confluence of Buffels with Doringspruit. Proposed Ncandu Dam. Sampling points on WMS, however difficult to access.

Ngagane from Ntshingwayo Dam to confluence with Buffalo

V31G, K (May 13_EWR 3)

Compon ent	Sub- component	RQO	Indicator	Νι	umerical Limit	/ measure	Context of the RQO and/or Numerical limit
	Low flows	EWR maintenance low and drought flows: Ngagane River at the EWR site May13_EWR3 (-27.819, 29.987) in V31K NMAR = 160.12 x10 ⁶ m ³ TEC=C/D category The maintenance low flows and	Maintenance and drought flows required for the Ngagane River	Oct Nov Dec Jan Feb Mar Apr	Maintenanc e Low flows (m ³ /s) flows m ³ /s) 0.366 0.560 0.762 1.138 1.541 1.269 0.928	Drought Low flows (m ³ /s) flows m ³ /s) 0.091 0.068 0.051 0.527 0.711 0.587 0.433	limit May13_EWR3 for TEC=C/D
Quantity		drought flows must be attained to support the upstream and downstream aquatic ecosystem of the Ngagane River to the confluence with the Buffalo River.		Ma y Jun Jul Aug Sep	0.539 0.326 0.243 0.234 0.273	0.202 0.112 0.123 0.119 0.111	(Baseflows, freshets/ floods)
	Freshets	EWR freshets to be released from Chelmsford Dam (V3R001) and Horn River	Freshets required for the Ngagane River	Nov Dec Jan Feb Mar	Freshet (m ³ /s) 10.0 12.0 15.0 20.0	Days 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Ngagane from Ntshingwayo Dam to confluence with Buffalo

V31G, K (May 13_EWR 3)

Sub- component	RQO	Indicator	Numerical Limit/ measure	Context of the RQO and/or Numerical limit
	Nutrient levels must be improved to sustain the aquatic ecosystem health	Ortho-phosphate (PO ₄ -) as Phosphorus	≤0.05 mg/L (50 th percentile)	Present state.
Nutrients	and to meet the prescribed ecological state (C ecological category)	Nitrate (NO ₃ -) as Nitrogen	≤ 2.0 mg/L (50 th percentile)	
Salts	Salinity concentrations must be maintained or improved to support downstream users.	Total Dissolved Solids	≤350 mg/L (95 th percentile)	C Category – Slight improvement of Present state Check with RO
System variables	pH range must be maintained within limits specified to support the aquatic ecosystem and water user requirements.	pH range	6.5 (5 th percentile) and 9.0 (95 th percentile)	Aquatic ecosystem as the driver.
Pathogens	The presence of pathogens should not pose a risk to human health	Escherichia coli	≤130 Colony forming counts per 100 mL (95 th percentile)	Human Health

Sub- component	RQO	Indicator	Numerical Limit/ measure	Context of the RQO and/or Numerical limit
		Ammonia as N	≤ 0.0725 milligrams/litre (mg/l) (95th percentile)	
		Aluminium (Al)	≤ 0.105 milligrams/litre (mg/l) (95th percentile)	
		Cadmium (Cd) soft	<pre></pre>	Strictest of ecological specifications. Ecological Reserve manual (2008), South
		Manganese (Mn)	<pre>≤ 0.15 milligrams/litre (mg/l) (95th percentile)</pre>	African Water Quality Guidelines (1996)
		Iron (Fe)	≤ 0.1 milligrams/litre (mg/l) (95th percentile)	Manganese and Iron – Domestic user water quality guideline (SAWQGs, 1996).
		Lead (Pb) hard	≤ 0.0095 milligrams/litre (mg/l) (95th percentile)	Cobalt – – Irrigation user water quality
	The concentrations of toxins should not be	Copper (Cu) hard	≤ 0.0073 milligrams/litre (mg/l) (95th percentile)	guideline (SAWQGs, 1996)
	toxic to aquatic organisms and a	Nickel (Ni)	≤ 0.07 milligrams/litre (mg/l) (95th percentile)	Zinc - Aquatic Ecosystem water quality guideline (SAWQGs, 1996).
	threat to human health.	Cobalt (Co)	≤ 0.05 milligrams/litre (mg/l) (95th percentile)	
Toxics	Confirm pesticides,	Zinc (Zn)	≤ 0.002 milligrams/litre (mg/l) (95th percentile)	
	hydrocarbons	Atrazine	≤0.078 milligrams/litre (mg/l)	Ecological specification. Ecological Reserve manual (2008). No monitoring data.
		Mancozeb	≤0.009 milligrams/litre (mg/l)	Human health is the driver. Australian drinking water guideline.
		Glyphosate	≤0.7 milligrams/litre (mg/l)	Human health is the driver. USEPA drinking water guideline
		Endosulfan	≤0.13 micrograms/litre (ug/l)	Ecological specification. Ecological Reserve manual (2008). No monitoring data.
		Oil and grease	2.5 mg/l	General and special standards for effluent in terms of NWA, 1956. No monitoring data
	Hydrocarbons -	Benzene	≤0.01 milligrams/litre (mg/l) (95th percentile)	WHO drinking water guideline. Human health limit. No available monitoring data.
		Toluene	≤0.7 milligrams/litre (mg/l) (95th percentile)	WHO drinking water guideline. Human health limit. No available monitoring data
Pathogens	Pathogens	The presence of pathogens should not pose a risk to human health	Escherichia coli	≤130 Colony forming counts per 100 mL (95 th percentile)

2.5

Ngagane from Ntshingwayo Dam to confluence with Buffalo V31G, K (May 13_EWR 3)C

Component	Sub-component	RQO	Indicator	Numerical Limit/ measure
Habitat	Instream	Natural flow pattern must be maintained in C Ecological Category. Alien invasive controls must be implemented, maintained and/ improved.	IHI and IHAS	Instream Habitat Integrity (class C) Ecological Category (60 – 79%) Riparian Integrity - Class ≥B Ecological Category (80 – 90%) IHAS to be good habitat availability (>65%)
	Riparian habitat	The riparian vegetation must be maintained at VEGRAI ≥ C Ecological Category. Alien invasive controls must be implemented, maintained and/ improved.	VEGRAI	VEGRAI survey every 5 years. VEGRAI ≥C Ecological Category (>60%)
	Fish	Flow and water quality sensitive Fish species to be maintained or improved to a PES C/D ecological category.	FRAI Amphilius natalensis (ANAT) Barbus (Enteromius) paludinosus (BPAU) Labeobarbus natalensis (BNAT) Barbus (Enteromius) pallidus (BPAL) Barbus (Enteromius) anoplus (BANO)	During survey in all flow habitat classes all species present. BNAT, BPAL and BANO – 2 of 3 spp present as habitat indicators; and ANAT ≥ 3 individuals per species FRAI EC: C/D (60 - 79%)
Biota	Aquatic invertebrates	Flow and water quality sensitive macroinvertebrate assemblages to be maintained. Macroinvertebrate assemblages must be maintained within a C/D ecological category or improved upon.	SASS 5 MIRAI Baetidae >2 spp Heptageniidae Leptophlebiidae Tricorythidae Leptoceridae Hydropsychidae >1spp Elmidae Economidae	3 biotopes sampled; assemblages to be ≥ B abundances; SASS 5 scores: ≥213 ASPT score: ≥7.2 MIRAI EC: C/D (50 – 79%)
	Diatoms	Ecological water quality should be maintained as moderate quality	Specific Pollution Sensitivity Index (SPI) Percentage pollution tolerant values (%PTV)	SPI: 12 - 14 PTV: 20 to <40%

Zaaihoek Dam

1.2

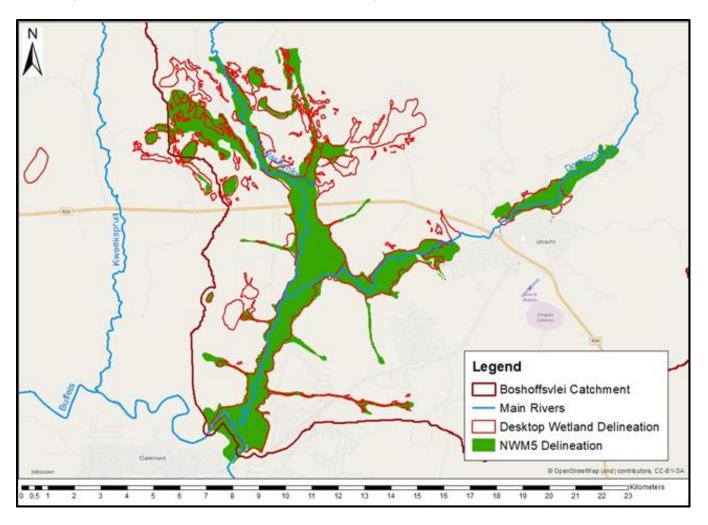
V31A

Component	Sub-component	RQO	Indicator	Numerical Limit	Context of the RQO and/or Numerical limit
Quantity	Dam level	Update and review operating rules to sustain optimal dam levels to support users and downstream aquatic ecosystem. The dam level must be managed to protect ecosystem function as well as downstream users.	Minimal operating level required in the dam.		Operating rules
	Nutrients	Nutrient levels must be maintained to sustain good water quality state and	Ortho-phosphate (PO ₄ -) as Phosphorus	≤0.01 mg/L (50 th percentile)	
Nutrients		ecological condition. Impacts must be limited to prevent deterioration.	Nitrate (NO ₃ ⁻) as Nitrogen	≤0.5 mg/L (50 th percentile)	
	Salts	Salinity concentrations must be maintained to sustain good water quality state and ecological condition.	Total Dissolved Solids	≤120 mg/L (95 th percentile)	
Quality		pH range must be maintained within limits specified to support the aquatic ecosystem and water user requirements.	pH range	6.5 (5 th percentile) and 9.0 (95 th percentile)	Aquatic ecosystem as the driver.
	System variables	Maintain baseline clarity	Turbidity	Must not deviate more than 10% from background levels	
	Pathogens	The presence of pathogens should not pose a risk to human health	Escherichia coli	≤130 Colony forming counts per 100 mL	

RESOURCE QUALITY OBJECTIVES

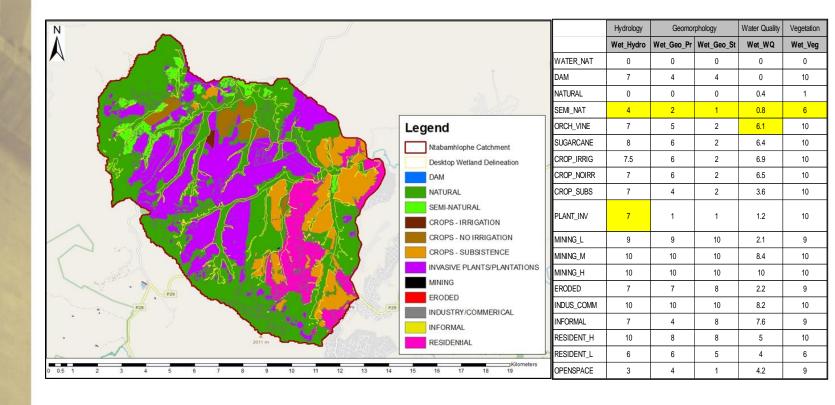
Wetlands

WATER IS LIFE - SANITATION IS DIGNITY


Toll Free: 0800 200 200 www.dwa.gov.za

Wetland Data

Wetland data availability	Confidence in the data	Approach used during this study to improve the confidence
Wetlands in the Catchment National Wetland Map 5 (Van Deventer <i>et al.</i> , 2018) - (GIS layer) NFEPA wetland layer (Nel <i>et al.</i> , 2011) - (GIS layer)	Low to medium confidence	Used available imagery of the Thukela catchment to identify gaps in the databases and/or verify the existing data where appropriate
Identification of Priority Wetlands Used mainly old hard copy maps and report from Begg (1989).	High confidence	-
Wetland Delineation	Low confidence as all desktop mapping	Undertook more detailed (higher confidence) desktop mapping of each of the Priority Wetlands
Wetland Typing	Low confidence	Focused predominantly on the main system in each case rather than tributaries
Wetland Categorisation PES or similar surrogate data only available for some systems - desktop level. No IS data available.	Low confidence	PES – Used a desktop assessment with 2018 National Landcover data for input. IS – Used surrogate databases together with information from site visits


Updated Mapping - Approach

- Desktop mapping using ArcGIS and multiple date/year aerial imagery; and
- **U** Typing was done at a coarse level focusing on the main systems.

Categorisation - Approach

- Description PES Wet-Health Level 1a (MacFarlane *et al.*, May 2020) desktop assessment;
- 2018 National Landcover data as the basis;
- 1990 National Landcover data used as a comparison to determine the trajectory of change; and
- □ IS Desktop assessment using the method described in Rountree *et al.* (2013).

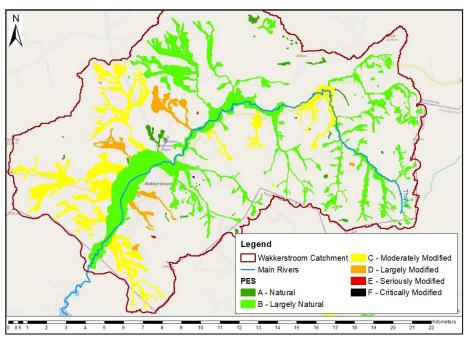
Categorisation - Approach

	Open Water – Natural	Open Water - Artificial	Natural / Minimally impacted	Semi-natural	Orchards and vineyards	Sugar cane	Commercial annual crops (irrigated)	Commercial annual crops (non-irrigated)	Subsistence crops	Plantations and dense alien vegetation	Mining - low risk	Mining - medium risk	Mining - high risk	Eroded areas (& heavily degraded land)	Urban Industrial/Com mercial	Urban Informal	Urban Residential – high density	Urban Residential – Iow density	Urban Open Space	Total Area (ha)
Wetland_ID	WATER_NAT	DAM	NATURAL	SEMI_NAT	ORCH_VINE	SUGARCANE	CROP_IRRIG	CROP_NOIRR	CROP_SUBS	PLANT_INV	MINING_L	MINING_M	MINING_H	ERODED	INDUS_COMM	INFORMAL	RESIDENT_H	RESIDENT_L	OPENSPACE	AREA_TOT
NH1		0.2	10.4							1.1					0.1					11.8
NH10		0.0							6.6	0.7						0.4	2.6			89.6
NH11			96.0	14.1					27.2					0.0	0.0	0.3	1.6			139.3
NH12			117.8					0.3		1.4					0.0					119.5
NH13			31.9					11.8								0.5				67.4
NH14		0.2							0.5	6.8						0.1	2.6	i		133.5
NH15			15.0						0.8											15.8
NH16			4.4						4.2											8.6
NH17			2.1						0.3							0.3	1.2			3.9
NH18			5.7						6.3											12.0
NH19			47.4					0.8		1.5										49.7
NH2			16.3					0.2		0.0										30.1
NH20			13.9							0.9										14.7
NH21		0.1						0.0		0.9										93.6
NH3		0.0						0.0		0.2										24.8
NH4			18.3							3.1										21.4
NH5			9.7						18.6							0.4	2.0	-		30.7
NH6			11.7																1	11.9
NH7		0.2							0.2	0.8			I							2.2
NH8			69.8				0.1			1.8										71.6
NH9	1		36.7	2.8	1	1	0.1		1	2.9	1		1	1			1	1	1	42.5

	Open Water – Natural	Open Water - Artificial	Natural / Minimally impacted	Semi-natural	Orchards and vineyards	Sugar cane	annual crops	Commercial annual crops (non-irrigated)	Subsistence crops	Plantations and dense alien vegetation	Mining - low risk	Mining - medium risk	Mining - high risk	Eroded areas (& heavily degraded land)	Urban Industrial/Com mercial	Urban Informal	Urban Residential – high density	Urban Residential – Iow density	Urban Open Space	Total Area (ha)
Wetland_ID	WATER_NAT	DAM	NATURAL	SEMI_NAT	ORCH_VINE	SUGARCANE	CROP_IRRIG	CROP_NOIRR	CROP_SUBS	PLANT_INV	MINING_L	MINING_M	MINING_H	ERODED	INDUS_COMM	INFORMAL	RESIDENT_H	RESIDENT_L	OPENSPACE	AREA_TOT
NH1			11.84732074							37.53702354				0.131662467	0.216130598					49.73213734
NH10		0.019423845							80.92505182					0.430546233	0.186643885	4.32043897	50.11504928			295.0683797
NH11			196.8337045	0.829220376					185.5473705	1.931806709				0.122161091	0.069844936	8.889844009	67.54728154			461.7712337
NH12			135.3818817	22.4677429				22.17025682		35.71333972				0.773744507	0.625232643					217.1321983
NH13			37.87289293					0.005112291	70.69726187		0.689844161					2.492475691	126.9794266			238.7370136
NH14		0.0243889	181.4039205							212.1262254						4.83328857	32.54659896			447.3836517
NH15		0.053994153	126.817892						18.88864556	10.89270603					0.020673443					156.6739112
NH16			24.45098264						46.40119971											70.85218234
NH17			4.372580417						19.18325112								23.85479248			50.1838673
NH18			11.24170565						66.75471821					0.025615234		1.453513825	1.448351438			80.92390436
NH19			35.213772					40.04637567		126.9373727					0.330140778					202.5276612
NH2			68.33499918					29.05864631		19.69008779										190.4677167
NH20			28.26933747							68.50086681					0.521768925					98.61038682
NH21		0.003839017		65.68576166				12.00941885	6.932993408	87.45666605					0.116170357	0.08	1.002925068			299.5399874
NH3			61.44873423	23.56527894				7.226749872		17.4351986						2.977229586				112.6531912
NH4			111.6442554							58.83847154										170.4827269
NH5			54.99391405						18.07535111	0.940609398	0.768769684				0.060988198	1.743688596	27.13450436			103.7178254
NH6			113.5157123	13.08529939						1.598360292										128.199372
NH7		0.057146891	5.757722052	10.6861023					6.886424167											40.71190395
NH8			62.80408758				9.989730327		0.000573505	129.3400089						0.35084052	2.426750925			206.0038852
NH9			53.21978546	2.606796274			6.909560384			115.7737369										178.509879

		H	YDROLOO	θY	GEO	MORPHOL	.OGY	WA	TER QUAL	ITY	V	VEGETATION				DITION	
Wetland_ID	Wetland area (Ha)	Impact Score	PES Score (%)	Ecologic al Category	Combine d Impact Score	Overall PES Score (%)	Combine d Ecologic al Category	HECTARE EQUIVALENTS (based on Overall PES)									
Wetland_ID	WET_AREA	IMPACT_ HYD	PES_HY DRO	EC_HYD RO	IMPACT_ GEO	PES_GE O	EC_GEO	IMPACT_ WQ	PES_WQ	EC_WQ	IMPACT_ VEG	PES_VE G	EC_VEG	IMPACT_ ALL	PES_ALL	EC_ALL	HA_EQUIV
NH1	11.8	5.6	44.4	D	1.9	81.5	В	1.8	82.2	В	2.0	79.7	С	3.1	68.9	С	8.1
NH10	89.6	4.5	55.2	D	2.0	80.3	В	2.6	73.8	С	2.1	79.2	С	3.0	70.3	С	63.0
NH11	139.3	4.7	52.5	D	2.2	78.4	С	2.9	70.6	С	3.4	66.1	С	3.5	65.3	С	91.0
NH12	119.5	3.2	68.0	С	1.2	87.6	В	1.8	82.1	В	1.1	88.7	В	2.0	80.1	В	95.7
NH13	67.4	6.8	32.5	E	4.4	55.9	D	5.0	50.5	D	5.7	42.6	D	5.9	41.1	D	27.7
NH14	133.5	4.6	53.7	D	1.7	83.5	В	1.9	80.6	В	1.7	83.1	В	2.7	72.8	С	97.2
NH15	15.8	2.9	71.0	С	1.2	88.1	В	1.7	82.7	В	1.5	85.3	В	1.9	80.6	В	12.7
NH16	8.6	6.0	40.5	D	2.8	71.6	С	3.6	63.9	С	5.4	45.9	D	4.6	53.8	D	4.6
NH17	3.9	6.4	36.0	E	4.3	56.7	D	4.7	52.7	D	5.1	49.4	D	5.6	44.5	D	1.7
NH18	12.0	6.4	35.8	E	3.1	68.6	С	4.0	60.0	D	5.7	42.5	D	5.4	46.4	D	5.6
NH19	49.7	5.2	47.8	D	1.9	81.0	В	2.3	77.1	С	1.4	85.8	В	3.0	70.1	С	34.8
NH2	30.1	4.3	56.6	D	1.9	80.9	В	2.1	78.8	С	3.3	66.6	С	3.1	69.2	С	20.8
NH20	14.7	5.2	48.4	D	1.7	83.5	в	1.7	83.0	В	1.5	84.6	В	2.8	71.9	С	10.6
NH21	93.6	4.3	56.9	D	1.6	83.6	В	1.8	82.0	В	2.3	77.0	С	2.7	72.9	С	68.3
NH3	24.8	4.3	57.1	D	1.8	82.2	В	1.9	80.9	В	3.3	66.6	С	3.0	70.1	С	17.4
NH4	21.4	4.2	57.9	D	1.3	86.7	В	1.6	83.9	В	2.3	77.0	С	2.6	74.3	С	15.9
NH5	30.7	6.5	34.6	E	3.3	67.1	С	4.1	58.5	D	7.1	28.7	E	5.7	43.0	D	13.2
NH6	11.9	1.2	87.9	В	0.6	94.2	Α	1.1	89.4	В	1.1	89.5	В	1.0	90.0	В	10.7
NH7	2.2	7.0	29.7	E	2.6	74.0	С	2.3	77.4	С	6.1	39.5	Е	5.3	46.6	D	1.0
NH8	71.6	5.0	50.2	D	1.6	83.6	В	1.8	81.8	В	1.2	87.7	В	2.7	73.0	С	52.3
NH9	42.5	5.3	47.1	D	1.8	82.4	В	1.8	81.7	В	2.0	80.4	В	3.0	70.0	С	29.8

Priority Wetlands


Priority Wetland 1 – IUA 1

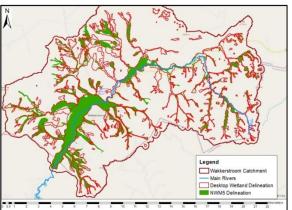
Wakkerstroom Wetland

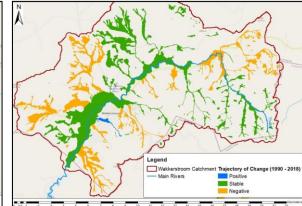
WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Wakkerstroom Wetland

IUA 1


Quaternary Catchment - V31A


Total wetland area mapped – 4 101 hectares (main wetland \sim 715 ha)

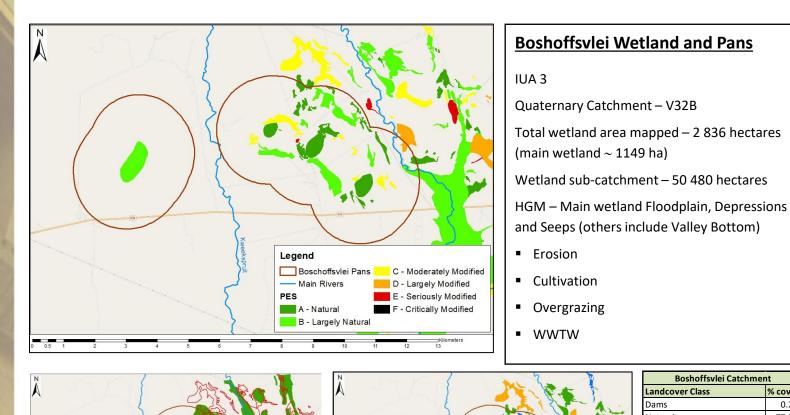
Wetland sub-catchment – 20 973 hectares

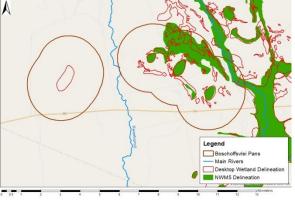
HGM – Main wetland Unchannelled Valley Bottom (others include Floodplain, Valley Bottom, Seep, Depression)

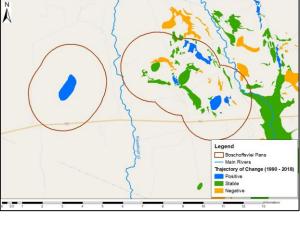
Flow reduction, WWTW inputs

Wakkerstroom Catchme	ent
Landcover Class	% cover
Dams	0.2%
Natural	79.1%
Semi-Natural	8.4%
Cultivation (irrigated)	0.0%
Cultivation (non-irrigated)	8.2%
Cultivation (subsistence)	0.2%
Plantations & Aliens trees	1.5%
Mining	0.0%
Eroded areas	0.1%
Industrial/Commercial/Roads	0.1%
Informal Settlements	0.2%
Residential	2.0%
TOTAL	100%

Priority Wetland 3 – IUA 3


Boschoffsvlei Pans



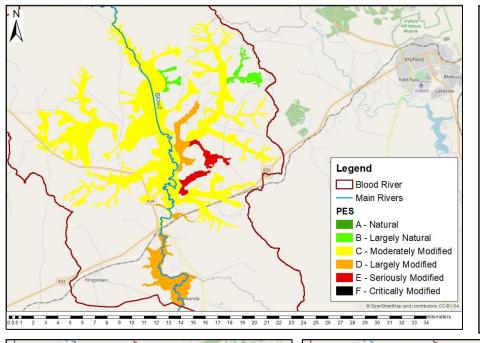


WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Boshoffsvlei Catchment								
Landcover Class	% cover							
Dams	0.2%							
Natural	77.3%							
Semi-Natural	9.7%							
Orchards	0.0%							
Cultivation (irrigated)	0.6%							
Cultivation (non-irrigated)	4.7%							
Cultivation (subsistence)	1.0%							
Plantations & Aliens trees	1.6%							
Mining	0.4%							
Eroded areas	1.6%							
Industrial/Commercial/Roads	0.1%							
Informal Settlements	0.4%							
Residential (high density)	1.5%							
Residential (low density	0.7%							
Urban open space	0.1%							
TOTAL	100%							

Priority Wetland 5 – IUA 5


Blood River Vlei

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Blood River Vlei

IUA 5

Quaternary Catchment – V32G & V32H

Total wetland area mapped – 8 899 hectares (main wetland ~ 2427 ha)

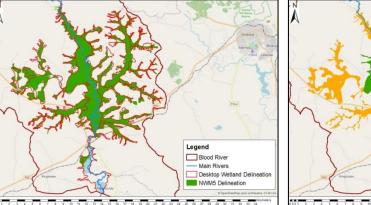
Wetland sub-catchment – 66 163 hectares

HGM – Main system Unchannelled Valley Bottom and Floodplain (others include Seep)

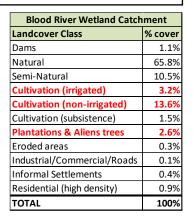
Dams

Legend

Blood River


Positive

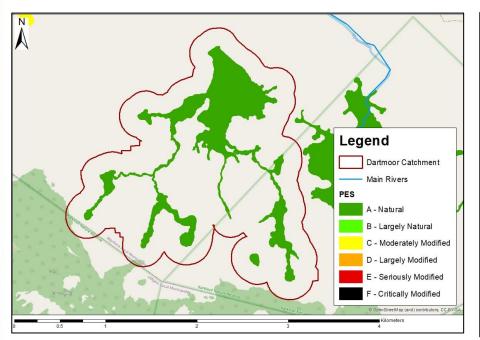
Stable


Negative

Main Rivers

Trajectory of Change (1990 - 2018)

Cultivation



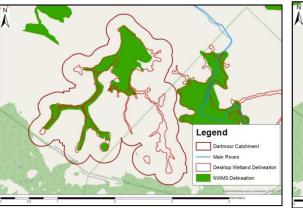
Priority Wetland 10 – IUA 8 Myamvubu Vlei Systems – Dartmoor Wetland

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Dartmoor Wetland

IUA 8


Quaternary Catchment - V20F


Total wetland area mapped – 92 hectares (main wetland \sim 53 ha)

Wetland sub-catchment – 479 hectares

HGM – Main system Channelled and Unchannelled Valley Bottom (others include Seep)

- Drains
- Wildlands Trust

Dartmoor Catchment							
Landcover Class	% cover						
Dams	0.3%						
Natural	99.3%						
Cultivation (non-irrigated)	0.3%						
Eroded areas	0.0%						
TOTAL	100%						

Categorisation Summary

No	IUA	Quaternary Catchment	Wetland Name	Wetland Type (main system)	PES	IS	REC	BAS	Conf. (0-5)
1	1	V31A	Wakkerstroom	UVB	В	VH	А	B/C	4
2	1	V31A	Groenvlei	CVB and FP	С	Н	B/C	С	3
3	3	V32B	Boschoffsvlei	FP	C*	Н	B/C	С	3
4	3	V32B	Boschoffsvlei pan complex	P and S	A & B	VH	А	A/B	4
5	5	V32G	Upper Blood River	S and UVB	A & B	Н	A/B	A/B	4
6	5	V32G	Blood River	UVB and FP	С	VH	В	С	3
7	6	V60D	Paddavlei	CVB and UVB	В	Н	A/B	В	3
8	6	V60B	Boschberg	FP	B/C*	Н	В	С	3
9	7	V20C	Hlatikulu	UVB and CVB	С	VH	В	С	3
10	7	V20A	Stillerust	CVB and FP	A	VH	А	А	4
11	8	V20F	Melmoth	UVB	A	VH	А	А	4
12	8	V20F	Dartmoor	UVB and CVB	А	VH	А	А	4
13	8	V20F	Scawby	UVB	С	VH	В	B/C	3
14	9	V70D	Ntabamhlope	FP and UVB	В	VH	А	С	3
15	14	V11B,G; V13A; V70A,B; V20A,B,C	Natal Drakensberg Park including the Highmoor wetlands	UVB, CVB and S	A & C	Н	A/B	A/B	4

* Modified PES based on expert opinion and site observations

Wetland RQO's – Limitations

Limited to no flow or water quality data (especially updated information) are available for the majority of the Priority Wetlands, with the Wakkerstroom Priority Wetland being the exception.

RQO's for the wetlands are thus qualitative and confidence in the components is low for water quantity and quality where these are indicated and medium for Habitat and Biota, based on the limitations imposed by the existing information.

Wetland REC

- □ The PES and IS served as the starting point;
- □ Used a modification of the principles outlined in Rountree *et al.* 2013 to derive the REC; and
- Expert judgement and the trajectory of change over the past 28 years was used to derive a BAS (preliminary at this stage) for each priority wetland – whether the systems are likely to either stay the same or change depending on the pressures they previously experienced, and based on likely additional threats or pressures going forward.

Wetland RQO's

Setting Preliminary Wetland RQO's

- □ Generic and specific preliminary RQO's for each of the Priority Wetlands have been developed as applicable;
- □ These still need to be workshopped with the project team and amended as necessary;

Outcome – Preliminary RQO's for the Priority Wetlands

Once amended, these will need to be presented for comments, review and inputs at the respective stakeholder meetings.

Outcome – Final RQO's for the Priority Wetlands

Preliminary Wetland RQO's - Wakkerstroom

Component prioritised	Indicator	RQO	Numerical Criteria
Quantity	River and groundwater indicators apply.	A constant baseflow must be maintained that	River and groundwater numerical limits must apply (see river and groundwater numerical limits).
	Others TBD with inputs from various stakeholders involved with the system.		
Quality		river and groundwater RQO's apply (see	River and groundwater numerical limits apply (see river and groundwater numerical limits).
	Others TBD with inputs from various stakeholders involved with the system.		
Habitat	PES Category - As a minimum undertake a WET-Health Level 1a PES assessment (as per the method described by Macfarlane <i>et al.</i> , 2020). For the PES assessment the latest available National or Provincial Land Cover datasets should be utilised for the wetland catchment, while detailed manual digitising of land cover within the wetland should be undertaken off latest available aerial imagery (and	Maintain desktop PES category of B (84.1 %) although the likely BAS Category is C (70 %) due to flow reduction as a result of climate change factors.	Less than 10% deterioration in PES score from the baseline of 84.1% .
	Peat depth and humification – determine using the von Post Humification Scale (after von Post, 1922; von Post and Granlund, 1926) at selected points in the wetland to determine depth and humification of the peat. Determine baseline and repeat every 5 years.	Peat depth and humification should be constant over time	Less than 10% deterioration in peat depth and humification over time.
	Presence of Critically Endangered White-winged Flufftail	Maintain a population of White-winged Flufftail in the wetland.	Continued presence of White-winged Flufftail.
Biota	Verify from monitoring records and recorded sightings from available avifaunal reporting data.	aquatic/wetland dependent bird species must	TBD with inputs from various stakeholders involved with the system.
	Report on this every 3 to 5 years.		

_

Preliminary Wetland RQO's – Boschoffsvlei Pans

Component prioritised	Indicator	RQO	Numerical Criteria
Quantity	Pan wetted perimeter as measured from desktop mapping in relation to antecedent rainfall. Compile an accurate desktop basemap for the pans prior to the start of monitoring using the most recent available remote imagery and determine the wetted perimeter in relation to antecedent rainfall for the pans. Repeat the above every 3 to 5 years and assess and report on this with a view to assess if there have been any measurable changes in the relationship between wetted perimeter and antecedent rainfall in the pan.	Water quantity impacts must be managed so as not to undermine the ecological value of the pans. In particular, abstraction or artificial water inputs should be limited in the pans so that the depth and duration of inundation is maintained within the normal range for high, average and low rainfall years.	TBD
Quality	pH, Electrical Conductivity, TDS, Total Alkalinity as CaCO3, Sodium, Calcium, Magnesium, Sulphate, Iron, Chloride, Potassium, Magnesium, Manganese, Aluminium, Phosphorous, Silica, Fluoride Ammonia, Nitrate and Fluoride. Sample every 3 to 5 years.	Water quality impacts to the pan systems must be restricted to ensure that the water and sediment chemistry remain within an acceptable normal range (anion and cation concentration to pan volume relationship) for this particular water chemistry pan type.	TBD
Habitat	PES Category - As a minimum undertake a WET-Health Level 1a PES assessment (as per the method described by Macfarlane <i>et al.</i> , 2020). For the PES assessment the latest available National or Provincial Land Cover datasets should be utilised for the wetland catchment, while detailed manual digitising of land cover within the wetland should be undertaken off latest available aerial imagery (and supplement through field verification where and if available) and used for the within-wetland land cover. Repeat as soon as new National or Provincial land cover data is available but at least every 5 years if possible and report on this with a view to assess if there have been any changes in the state of the system.	Maintain desktop PES category of pans.	Less than 10% deterioration in PES score from the baseline. Baseline PES scores for pans from west to east: • 90 % • 92.8 % • 92.2 % • 90.7 %
Biota	Reporting rates for aquatic/wetland dependent Red Data bird species: Grey Crowned Crane African Marsh Harrier Blue Crane Greater Flamingo Lesser Flamingo Verify from monitoring records and recorded sightings from available avifaunal reporting data. Report on this every 3 to 5 years.	Overall diversity and populations of aquatic/wetland dependent bird species must be maintained.	Blue and Grey Crowned Crane aspects TBD/confirmed with input from the EWT. Reporting rates for other aquatic/wetland dependent Red Data bird species TBD.

Preliminary Wetland RQO's – Blood River Vlei

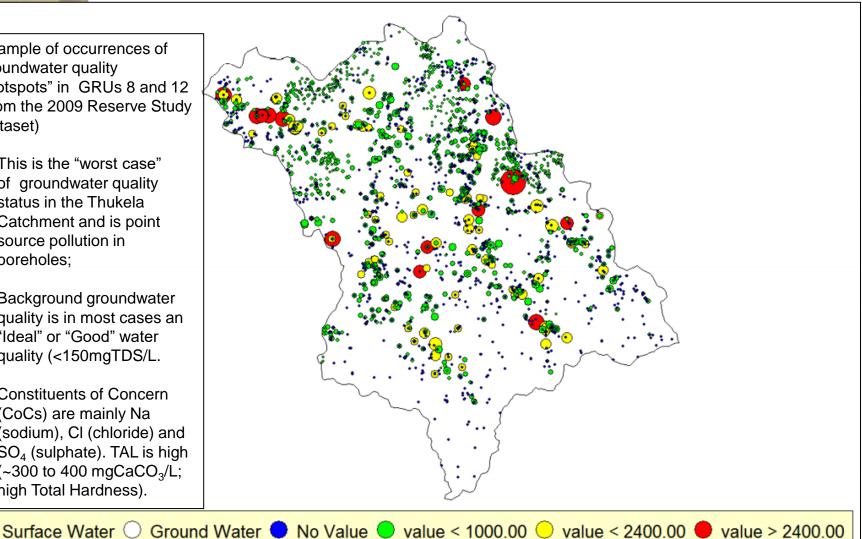
Component prioritised	Indicator	RQO	Numerical Criteria
	inundation/flooding in relation to rainfall for the wetland.	Floods are necessary to inundate the floodplain thereby providing the wetting regime required for supporting the floodplain vegetation, particularly the facultative hydrophytic grasses, sedges and forbs that are dependent on flooding for their life cycles.	TBD
Quantity	Extent of dams and Surface Flow Reduction (SFR) activities (e.g. Irrigated cultivation, plantations, etc.)	Existing water inputs to the wetland from its' catchment must be maintained, with no increase in direct abstraction from the wetland.	Current extent of dams and SFR activities within the catchment. To be determined.
	River indicators apply for baseflow (see river indicators).	River RQO's apply (see river RQO's).	River numerical limits apply (see river numerical limits).
Quality	River indicators apply (see river indicators).	River RQO's apply (see river RQO's).	River numerical limits apply (see river numerical limits).
Habitat	PES Category - As a minimum undertake a WET-Health Level 1a PES assessment (as per the method described by Macfarlane <i>et al.</i> , 2020). For the PES assessment the latest available National or Provincial Land Cover datasets should be utilised for the wetland catchment, while detailed manual digitising of land cover within the wetland should be undertaken off latest available aerial imagery (and supplement through field verification where and if available) and used for the within-wetland land cover. Repeat as soon as new National or Provincial land cover data is available but at least every 5 years if possible and report on this with a view to assess if there have been any changes in the state of the system.		Less than 10% deterioration in PES score from the baseline: North of R34 crossing – 75 % South of R34 crossing – 55.7 %
Biota		Overall diversity and populations of aquatic/wetland dependent bird species must be maintained.	Grey Crowned Crane aspects TBD/confirmed with input from the EWT. Reporting rates for the African Marsh Harrier TBD.

Preliminary Wetland RQO's - Dartmoor

Component prioritised	Indicator	RQO	Numerical Criteria
Habitat	PES Category - As a minimum undertake a WET-Health Level 1a PES assessment (as per the method described by Macfarlane <i>et al.</i> , 2020). For the PES assessment the latest available National or Provincial Land Cover datasets should be utilised for the wetland catchment, while detailed manual digitising of land cover within the wetland should be undertaken off latest available aerial imagery (and supplement through field verification where and if available) and used for the within-wetland land cover. Repeat as soon as new National or Provincial land cover data is available but at least every 5 years if possible and report on this with a view to assess if there have been any changes in the state of the system.	Maintain desktop PES category of wetland.	Less than 10% deterioration in PES score from the baseline – 95 %
Biota	 Reporting rates for aquatic/wetland dependent Red Data bird species: Wattled Crane Grey Crowned Crane African Marsh Harrier Blue Crane Verify from monitoring records and recorded sightings from available avifaunal reporting data. Report on this every 3 to 5 years. 	Overall diversity and populations of aquatic/wetland dependent bird species must be maintained. Species specific TBD with input from Willdlands Trust, Ezemvelo KZN Wildlife and the EWT.	TBD with input from Willdlands Trust, Ezemvelo KZN Wildlife and the EWT. Reporting rates for the African Marsh Harrier TBD.

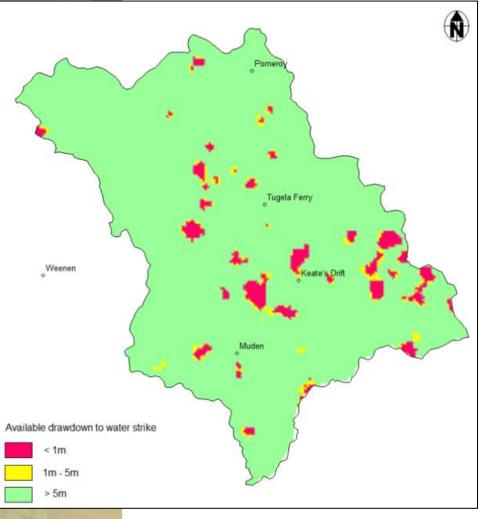
RESOURCE QUALITY OBJECTIVES

Groundwater (Example)


WATER IS LIFE - SANITATION IS DIGNITY

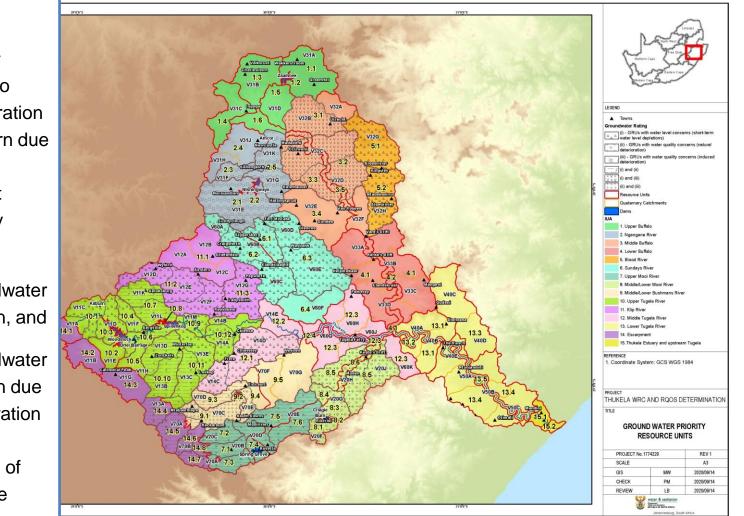
Toll Free: 0800 200 200 www.dwa.gov.za

Example of groundwater quality status


Example of occurrences of groundwater quality "Hotspots" in GRUs 8 and 12 (from the 2009 Reserve Study Dataset)

- This is the "worst case" of groundwater quality status in the Thukela Catchment and is point source pollution in boreholes;
- Background groundwater quality is in most cases an "Ideal" or "Good" water quality (<150mgTDS/L.
- Constituents of Concern (CoCs) are mainly Na (sodium), CI (chloride) and SO₄ (sulphate). TAL is high (~300 to 400 mgCaCO₃/L; high Total Hardness).

Total dissolved solids [mg/l] (Last value measured) - SANS 241:2005


Example of occurrences groundwater quantity status

Example of occurrences groundwater quantity (i.e., aquifer saturation water level) "Hotspots" in GRUs 8 and 12 (from the 2009 Reserve Study Dataset)

- An illustration of locations where the groundwater level is impacted by abstraction form the aquifer system which results in a local dewatering zone of X m over time;
- If not replenished annually, these spots will spread up to a point [in time] where the borehole(s) can't function economically.
- The RQOs should address this deterioration by means if limits in the individual water level drawdown value per borehole/wellfield; and
- Supported by a monitoring program where long-term time-series datasets will be able to manage abstraction figures.

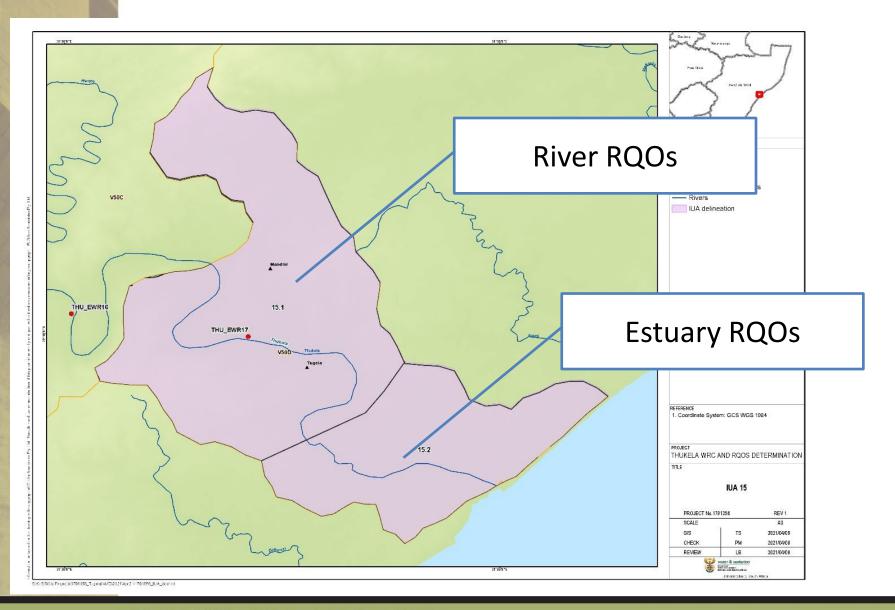
Study Overview: Groundwater

Groundwater RU prioritisation was based on the following criteria:

- RUs where aquifer sustainability due to recharge and saturation levels are a concern due to over abstraction and/or insignificant replenishment may occur,
- RUs where groundwater quality is a concern, and
- RUs where groundwater quality is a concern due to induced deterioration as the result of production/storage of concentrated waste material

Groundwater RQOs

IUA/ GRU ₍₂₀₂₀₎	Quantity (Qn) -Narrative	Quality (QI) Narrative	Protection Criteria/Numerical Limits
IUA 1: Upper Buffalo River (GRU-1)	Gwater Balance: Groundwater yield balance (aquifer abstraction/recharge=S.I.) needs to be assessed for wet and dry cycles (to secure groundwater yields during dry periods).	Salinity: Concentrations should not increase. Concentrations must be maintained at levels to secure an Ideal-Good water quality status. Note: Natural water quality signature: Ca/Mg/ Na-HCO ₃	Qn: Stress Index should remain ≤0.65 (≤65% of annual recharge). <u>Note</u> : SI is ~31%. QI: TDS – <450mg/L. Long-term trend should not approach +10% (∴~500 mg/L).
	Water table depths: Regular water level monitorin at wellfield(s) and background (viz. recharge) areas;	Macro-element constituents of concern (CoC): Chlorite and sulphate Note: TAL is dominant anion hydrochemistry constituent – should remain <300 mgHCO ₃ /L.	 Qn: Water level in wellfield area(s) should remain +5 above the main water strike (MWS). <u>Note:</u> Scattered areas where water level is <1 m above MWS in QC V31B and should be regarded as a "Hotspot" area. QI: Chloride: <90 mgCl/L. Long-term trend should not approach+10% (∴100 mg/l). QI: Sulphate: <180 mgSO₄/L. Long-term trend should not approach+10% (∴200mg/l).
	Piezometric trends (time series): Long-term water level time series assessment should confirm annual rise, stable or falling (recession) status.	Toxicity: Nitrate, fluoride concentrations must be maintained to support domestic water user criteria (upper limit of Good WQC (water quality class).	Qn: Water level recession rate must be less than 0.5 m/a. Ql: Nitrate: Less than 3.0 mg/l. Long- term trend should not approach +10% (~3.3 mg/l). Fluoride: Less than 1.0 mg/L. Long- term trend should not approach +10% (∴~1.1 mg/l).


RESOURCE QUALITY OBJECTIVES

Estuary

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Estuary RQOs

Resource Quality Objectives (RQO)

- In order to find a balance between protecting and sustaining a relevant water resource and the need to use them, to benefit all users, a freshwater Reserve is set and managed using Resource Quality Objectives (RQOs).
- Resource Quality Objectives provide *clear goals that relate to the quality and quantity of the relevant water resources*, capturing the Management Class of the Classification System (DWA, 2011).
- In addition, the ecological needs that are determined in the ecological Reserve are *described as measurable management goals in the RQOs to guide resource managers* on how to manage the resource needs for the estuary.

Estuary RQOs

- The character and function of estuaries tends to differ substantially from the receiving rivers so are managed as individual Resource Units (RUs).
- Resource Quality Objectives are set for the short to medium term, 5 to 10 years, for the following abiotic (drivers) and biotic (responses) components:
 - Abiotic drivers
 - 1. Hydrology Quality, quantity and timing of instream flow.
 - 2. Hydrodynamics Mouth state.
 - 3. Water quality.
 - 4. Physical habitat.
 - Biotic responses
 - 5. Characteristics and condition of biota; microalgae, macrophytes, invertebrates, fish and birds.

Estuary RQOs (cont.)

- No Thresholds of Potential Concern (TPC) or Ecospecs were developed for the Thukela Estuary during the Ecological Reserve determination study (DWAF, 2004), so RQOs have been developed based on the tipping points between river categories (B and C) and yield scenarios (7 and 8) based on the Target Ecological Category (TEC) of C.
- In terms of RQOs for recreational use, the targets proposed are based on water quality guidelines for South Africa's coastal marine waters, recreational use (DEA, 2012) and for inland water (DWAF, 1996), where the estuary represents a gradient from fresh to saline water.

Estuary RQOs (cont.)

- To maintain an open estuary mouth and connectivity between the estuary and the adjacent coastal zone, a minimum inflow of 5 m³/s is required.
- River discharge is measured at the Mandini gauging weir (V2H005), which is located just upstream of the newly commissioned Lower Thukela Bulk Water Supply Scheme (LTBWSS) abstraction weir.
- The LTBWSS is currently in Phase 1 where up to 55 ML/d of raw water is abstracted from the Thukela River, via a weir, for treatment and distribution. Phase 2 of the LTBWSS, planned for the near future (5-10 years), will double the capacity of the associated water treatment plant, increasing abstraction to 110 ML/d.
- Abstraction rates of 55 ML/d and 110 ML/d translate into losses of river flow of 0.64 m³/s and 1.27 m³/s, respectively. It is essential that the quantity and timing of ecological flows required to achieve the Target Ecological Category (TEC) take the LTBWSS abstraction into account.

Estuary RQOs (cont.)

- The TEC (C) = PES (C) of the Thukela Estuary (DWAF, 2004) (Estuary Health Index (EHI) results.
- More recently, the PES was reviewed and recalculated to be a D based on updated abiotic and biotic scores.

Variable	Score (DWAF, 2004)	Score (van Niekerk et al., 2019)
Hydrology	87 (B)	70 (C)
Hydrodynamics & mouth condition	80 (B)	75 (C)
Water quality	54 (D)	54 (D)
Physical habitat alteration	80 (B)	70 (C)
Habitat health score	75 (C)	67 (C)
Microalgae	65 (C)	60 (D)
Macrophytes	60 (D)	60 (D)
Invertebrates	60 (D)	40 (D)
Fish	70 (C)	45 (D)
Birds	70 (C)	45 (D)
Biotic Health Score	65 (C)	48 (D)
Estuarine Health Index scores	70 (C)	58 (D)

Estuary RQOs (RU 15.2)

	BOR.				
Component	Sub-component	RQO	Indicator	Numerical Limit/ measure	Context of the RQO and/ or Numerical limit
Quantity	Low Flows	Flows must be met to maintain the open mouth of the estuary.	Base flows	Must exceed 5m-/s + LTBWSS abstraction (0.64 m-/s during Phase 1 and 1.27 m-/s during Phase 2) at Mandini Weir, V2H005	A flow measurement in the river will provide an indication if the required maintenance flows are being met. [NB. Must consider the abstraction from the Lower Thukela Bulk Water Supply Scheme.]
	High Flows (floods)	Floods are necessary to scour the estuary of accumulated sediments and organic matter, which are then transported to the coastal zone (Thukela Banks) and support crustacean and linefish fisheries.	Sediment composition (sediment particle size, organic content), Bathymetry	Maintain TEC: High flows within 8% of reference	Dams in the catchment had decreased flood peaks by an estimated 8% (DWAF 2004).
Hydrodynamics	Mouth Condition	The mouth needs to be open to maintain river, estuary and KwaZulu-Natal Bight interlinkages	Mouth condition – Open	Water level within tidal range (Exceeds 2.5 m when closed)	Tidal variation could fall within 0.3 m (neap) and 1.5 m (spring) range, exposing intertidal sediments. When closed, water backfloods and level can exceed 2.5 m above MSL. [Note: tidal gauge V5T003 data – 1999 to 2018 – indicated tidal range of 0 – >1.7 m; no indication of closure.]
	Abiotic states	The longitudinal salinity profile to be maintained to protect the estuarine ecosystem	River discharge Longitudinal salinity profile	Open estuary, with flows exceeding 5 m ³ /s, will have full salinity gradient; euhaline (>30) at mouth to oligohaline (0.5-5) up to 6 km upstream of mouth. Estuary becomes fully fresh at flow >30 m ³ /s (low tide) and when mouth has closed for extended period (weeks to months).	Longitudinal (mouth to head of estuary) and vertical (surface to bottom waters) salinity gradients develop in the estuary as less dense fresh river water mixes with saline marine water. The intrusion of saline water into the estuary increases as tidal height increases, particularly during spring high tides, and as river flow decreases. Mixing occurs outside of the estuary mouth, in the coastal zone, during large flood events.
	Salinity	Instream salinity levels as specified must be maintained to protect the aquatic ecosystem health and ensure the prescribed ecological category is met.	Salinity	Saline water within TEC may penetrate up to 6 km from the mouth at river flows close to 5 m/s	The vertical and longitudinal salinity gradients provide a broad range of habits from euhaline to oligohaline.
Quality	Dissolved inorganic nitrogen		Total Oxidised Nitrogen (Nitrate + nitrite; TON) plus ammonium = Dissolved Inorganic Nitrogen (DIN)	TON can range from < 0.05 (marine) to 1.40 mg-N/L (fresh) along salinity gradients. NH < 0.05 mg-N/L throughout	Marine water at the mouth of the estuary is typically low in TON (< 0.05 mg-N/L) and elevated in inflowing river water (up to 1.4 mg-N/L have been measured), creating longitudinal and vertical gradients (inversely correlated to salinity).
	Dissolved inorganic phosphorus	Instream concentration of nutrients as specified maintained to protect the aquatic ecosystem health and ensure the prescribed ecological	Orthophosphate; Dissolved Inorganic Phosphorus (DIP)	DIP < 0.05 (marine) to 0.20 mg-P/L (fresh) along salinity gradients.)	Marine water at the mouth of the estuary is typically low in DIP (< 0.05 mg- N/L) and elevated in inflowing river water (up to 0.2 mg-P/L have been measured), creating longitudinal and vertical gradients (inversely correlated to salinity).
	Nutrients	category is met.	DIN + DIP	$\label{eq:total_total} \begin{split} \text{TON} < 0.05 \ (\text{marine}) \ \text{to} \ 1.40 \ \text{mg-N/L} \ (\text{fresh}) \ \text{along salinity} \\ \text{gradients.} \\ \text{NH}_{*} < 0.05 \ \text{mg-N/L} \ \text{throughout.} \\ \text{DIP can range from } < 0.05 \ (\text{marine}) \ \text{to} \ 0.20 \ \text{mg-P/L} \ (\text{fresh}) \\ \text{along salinity gradients.} \end{split}$	Cultural eutrophication is the result of abnormally high loads of dissolved inorganic nutrients (DIN + DIP) entering aquatic environments. This supports rapid growth of primary producers (microalgae and macrophytes), build-up of organic matter, and high demand for oxygen through bacterial decomposition of this organic matter.
	Water Clarity	Water clarity to be maintained as specified to support the estuarine ecosystem.	Total Suspended Solids (TSS), Secchi depth, and/ or Turbidimeter	Turbidity should be < 20 mg/L (or < 20 NTU) at low river flows, close to 5 m/s, and near the mouth in saline waters. Turbidity should increase above 20 mg/L (or > 20 NTU) as river flow increases and in the fresher upstream areas.	Turbidity in water is caused by colloidal suspension of fine particles such as clays, silt and organic material, usually introduced through river run-off. The resuspension of debris occurs during turbulent conditions, usually caused by strong wind, wave action and strong river flow. Colloidally suspended particles and humic substances coagulate at the interface between fresh and estuarine waters, causing the material to flocculate, precipitate and settle out of the water column. This interface is often referred to as the turbidity maximum zone.
	Dissolved Oxygen	Estuary should be well-oxygenated throughout	Dissolved oxygen (mg/L)	Dissolved Oxygen > 4 mg/L.	Dissolved oxygen is an essential for most aquatic life. Anthropogenic sources that may influence dissolved oxygen concentration are those with high oxygen demand such as high organic content, biochemical oxygen demand or chemical oxygen demand. These include stormwater run-off, sewage discharge and certain industrial wastes. A frequently used threshold of hypoxia proposed in the literature is 4 mg- O ₂ /litre. Hypoxia can lead to biodiversity loss and affect surviving organisms through sublethal stresses. These include constrained growth and reproduction, physiologic stress, forced migration, loss of suitable habitat, increased vulnerability to predation, and disruption of life cycles.
	Toxic substances		Organic and inorganic constituents, and pathogens.	Toxic substances in water and sediments not to exceed target values as per SA Water Quality Guidelines and Western Indian Ocean Regional guidelines, respectively. Provided pH remains within 7.0-8.5 range within estuary, then ammonia should be present in its non-toxic, ionised form (NH ₂).	Various water quality constituents can stimulate algal growth or affect biological health. These are classified into organic and inorganic constituents, and pathogens. <u>Organic</u> : Organotins, total petroleum hydrocarbons, algal toxins, tainting substances, polycyclic aromatics, halogenated aliphatics and ethers, monocyclic aromatics, nitosamines, biocides, resin acids, and surfactants. <u>Inorganic</u> : ammonia, cyanide, fluoride, chlorine, hydrogen sulfide, arsenic, cadmium, chromium, copper, lead mercury, nickel, silver, tin, zinc, and other metals.
	Pathogens		Escherichia coli	Enterococci < 185 counts per 100 ml (90 %ile) Escherichia coli < 500 counts per 100 ml (90 %ile).)	For recreational use in estuaries (based on DEA, 2012). Faecal <i>Streptococcus</i> can provide a more direct measure of human-sourced wastewater effluent.

	and the second second				
Component	Sub-component	RQO	Indicator	Numerical Limit/ measure	Context of the RQO and/ or Numerical limit
Physical Habitat	Intertidal habitat		Area of tidally exposed sediments (GIS mapping)	Tidal exchange present: Tidal range 0.3 m (neap) - 1.5 m (spring) above MSL. Intertidal area estimated at 20.55 ha.	Tidal variation creates an intertidal habitat that is suitable for colonisation or feeding by certain taxa. These can include intertidal benthic microalgae, macrophytes (no saltmarsh present in Thukela Estuary), macroinvertebrates, macrocrustacea, and birds.
	Subtidal habitat		Area of permanently inundated sediments (GIS mapping)	Subtidal area estimated at 72.47 ha.	Permanently inundated, the water provides habitat for microalgae (phytoplankton and subtidal benthic microalgae), submerged macrophytes and macroalgae, zooplankton, macroinvertebrates, macrocrustacea, fish and birds.
	Substrate type	Sediment must be dominated by sand throughout the estuary except in deposition areas where silt/ mud can dominate.	Sediment particle size Ash-free dry weight Water content	Sediment dominated by sand (>90%) throughout the estuary except in deposition areas, within 0.5 km to 1.5 km of mouth, where fines (silt and clay) can exceed 80%; deposition of fines most likely during periods of low flow.	Sediment deposition along the Thukela River channel is greater than under natural conditions, a result of increased erosion and reduced flow competence to entrain sediment to the coast. Being a river-dominated system, the Thukela Estuary is dominated by coarse and medium sand, and acts as a conduit for sediment and organic material to the coastal zone. Fine sediments and organic matter are deposited during periods of low flows and scoured out during flood events.
Biota	Microalgae	Low phytoplankton biomass must be maintained	Biomass using chlorophyll-a as an index. Community structure using phytoplankton groups and benthic diatoms.	Maintain low phytoplankton biomass (average chl a < 20 μ g/ ℓ or median chl a < 3.5 μ g/ ℓ) and diversity of phytoplankton groups (cyanobacteria present but not dominant) associated with TEC. Diatoms and flagellated phytoplankton dominate the mid to lower reaches of the estuary, euglenids, chlorophytes and cyanophytes (in low abundance) present in the fresh upper reaches. Maintain median subtidal and intertidal benthic chl-a < 42 mg/m ² .	Microalgae are an important C source for zooplankton and benthic invertebrates. Diversity and abundance typically highest in fresh upper reaches of estuary. Reduced flow and greater salinity intrusion increase microalgal biomass and diversity. Extended mouth closure likely to result in loss in diversity and phytoplankton biomass and increase in benthic microalgal biomass. Phytoplankton chl-a > 20 µg/L represents blooms and should not occur in this system.
	Macrophytes	Distribution of plant communities to be maintained in relevant proportions and alien species to be limited.	Community structure using botanical survey and mapping (including alien invasive species).	Maintain diversity of macrophyte habitats based on TEC. Approximately 40 ha of common reed (<i>Phragmites australis</i>), sedge (<i>Schoenoplectus scirpoides</i>) and swamp forest (<i>Barringtonia racemosa and Hibiscus tiliaceus</i>) present in 2001. An increase in reeds and sedge into the main channel, and the presence of water hyacinth (<i>Eicchornia crassipes</i>) and bulrush (<i>Typha</i> spp.) indicate fresher, more stable and nutrient-rich conditions.	The distribution of plant communities is sensitive to changes in salinity and nutrient concentrations. Additional pressures include harvesting, grazing, loss of land within the estuarine functional zone and competition with invasive alien species.
	Invertebrates	Invertebrate community structure to be maintained.	Community structure. <u>Macrobenthos</u> : Eckman sediment grab sampling and sieving. <u>Zooplankton</u> : Night collection using Bongo nets. <u>Macrocrustacea</u> : Beam trawls and prawn traps.	Mangroves are not present due to the estuary being a river-dominated system. Maintain present relatively low diversity and low abundance invertebrate community as per TEC) physico-chemical conditions, sediment composition and estuary morphology. <u>Macrobenthos:</u> State 3 will have species-rich community associated with saline intrusion. Mid to upper reaches dominated by polychaetes, and establishment of gastropods and bivalves. Switch to State 2 will see a peak in abundance, as upper and lower reaches are colonised. During low flows, open mouth, fauna typically dominated by estuarine and marine spp.; polychaetes, amphipods, isopods, Tanaidacea, gastropods and bivalves. <u>Zooplankton (estuarine)</u> : High diversity, low abundance during State 3 will switch to low diversity, high abundance during State 2. <u>Macrocrustacea</u> : Paneid post-larvae need access to estuary in spring, and <i>Varuna litterata</i> need to access marine environment in late Autumn. <i>Macrobrachium</i> requires salinity gradient (State 2 & 3) for larval development and is sensitive to sediment deposition and habitat shrinkage.	<u>Macrobenthos</u> communities are influenced by salinity gradients, shelter from wave action, fluctuations in temperature and dissolved oxygen, nature of the substratum, and input of detritus. Estuaries support a variety of marine, estuarine and freshwater holo- and meroplanktonic <u>zooplankton</u> , dominance of which depends on estuarine characteristics (including abiotic states). <u>Macrocrustacea</u> use estuaries for shelter and nursery grounds. River flow and water quality threaten this use and the link between fresh and marine environments. Mouth closure is biggest threat.
	Fish	Estuaries to be maintained as nursery areas for estuary- dependent fish, habitat for stenohaline marine and euryhaline freshwater fish, and conduits for Anguillid eel larvae.	Fish Recruitment Index (FRI) Community structure (seine net collection)	Maintain diversity and abundance that is consistent with TEC. 40 fish spp. from 20 families are present when a full salinity gradient is present. Six species dependent on estuary for breeding purposes, 25 marine spp. with a gradient of dependence on the estuary as a nursery habitat (very dependent to not at all). Only one freshwater species regularly recorded in the estuary. Six species are endemic to southern Africa. Anguillid eels make extensive use of the estuary when migrating between the marine environment and river catchment.	Mouth condition, river flow, food availability (e.g. detritus and invertebrates), and habitat diversity affect community structure.
	Birds	Three major groups of estuarine dependent birds to be maintained; summer (incl. palaearctic migrants) and winter fauna that use the estuary for feeding, and birds that use the estuary to roost and mostly feed offshore.	Winter and summer bird counts	Maintain an avifaunal community that is consistent with TEC; representatives of all three groups. 64 bird spp. recorded from estuary. Three groups; summer (incl. Palaearctic migrants) winter that use the estuary for feeding, and species that roost in the estuary and feed offshore (dominated by guils and terns). Average monthly average of species is 26, exceeding 4000 individuals during summer months (Nov-Mar). No endemic species have been recorded.	Changes in habitat, food availability and human disturbance affect community composition and species abundance.

Conclusions

- The RQOs proposed in the above sections provide a set of objectives that are based on available data, information, previous studies, the Water Resource Classification component and inputs from external specialists and stakeholders.
- These proposed RQOs and associated numerical limits have been taken through various stakeholder consultation processes and are based on guidance received and best available information sources at the time of development.
- The Implementation Plan to follow will be developed around the inputs received and will aim to put forward a plan that will enable the Department of Water and Sanitation to work in collaboration with the various relevant Government Departments and external organisations in the Thukela catchment, to work towards the achievement of the RQOs, and fill gaps that may still exist.

Discussion

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za